44 research outputs found

    Chronic iEEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states

    Full text link
    Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Methods: Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterised the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states (SNSs). We then compared SNS occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. Results: In most patients, the occurrence or duration of at least one SNS was associated with the time since implantation. Some patients had one or more SNSs that were associated with phases of circadian and/or multidien spike rate cycles. A given SNS's occurrence and duration were usually not associated with the same timescale. Discussion: Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a SNS's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures, and similar principles likely apply to other neurological conditions

    Multiple mechanisms shape the relationship between pathway and duration of focal seizures

    Get PDF
    A seizure’s electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical ‘pathway’, and the time it takes to complete that pathway, which results in the seizure’s duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were ‘truncated’ versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations (‘elasticity’), or had similar durations, but followed different pathways (‘semblance’). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity

    Dynamic Status Signal Reflects Outcome of Social Interactions, but Not Energetic Stress

    Get PDF
    Social defeat induces stress-responses in a wide array of vertebrates and can generate winner-loser effects. Dynamic condition-dependent signaling systems that reflect preparation for subsequent agonistic interactions, and thereby mediate winner-loser effects, should be more sensitive to competitive history than to non-social sources of stress. Bill color of female American goldfinches (Spinus tristus) is a dynamic condition-dependent ornament that functions as a signal of competitive status and mediates intrasexual agonistic social interactions. We tested the “social experience signaling hypothesis” in female goldfinches by (1) manipulating a non-social energetic stressor by experimentally elevating flight costs via wing-clipping in free-ranging birds, and (2) manipulating social experience by staging competitive interactions among captive birds. Bill color change did not differ between wing clipped and non-clipped females, even though stress-response, as measured by the heterophil to lymphocyte (H:L) ratio, increased significantly in clipped females relative to unclipped females. In contrast, winners and losers in the social experience experiment differed significantly in the degree and direction of bill color change following social contests, with bill color increasing in winners and decreasing in losers. These results suggest that dynamic bill color of female American goldfinches signals recent social history, but is less sensitive to some stressors stemming from non-social sources, and thereby suggest that signals can evolve sensitivity to specific types of processes relevant to the context in which they are used

    Volumetric and structural connectivity abnormalities co-localise in TLE

    Get PDF
    Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE

    MEG abnormalities highlight mechanisms of surgical failure in neocortical epilepsy

    Get PDF
    Neocortical epilepsy surgery fails to achieve post-operative seizure freedom in 30-40% of cases. It is not fully understood why surgery in some patients is unsuccessful. Comparing interictal MEG bandpower from patients to normative maps, which describe healthy spatial and population variability, we identify patient specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome; 1) failure to resect abnormalities, 2) failing to remove all epileptogenic abnormalities, and 3) insufficiently impacting the overall cortical abnormality. We develop markers of these mechanisms, validating them against patient outcomes. Resting-state MEG data were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative bandpower maps were computed using source localised recordings from healthy controls. Patient and region-specific bandpower abnormalities were estimated as the maximum absolute z-score, using healthy data as a baseline. Resected regions were identified from post-operative MRI. We hypothesised our mechanism markers would discriminate patient's post-surgery seizure outcomes. Mechanisms of surgical failure discriminate surgical outcome groups (Abnormalities not targeted: AUC=0.80, Partial resection of the epileptogenic zone: AUC=0.68, Insufficient cortical abnormality impact: AUC=0.64). Leveraging all markers together found that 95% of those who were not seizure free had markers of surgical failure in at least one of the three proposed mechanisms. In contrast, of those patients markers for any mechanism, 80% were seizure-free. Abnormality mapping across the brain is important for a wide range of neurological conditions. Here we demonstrated that interictal MEG bandpower mapping has merit for localising pathology and improving our mechanistic understanding of epilepsy

    MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy

    Get PDF
    Objective: Epilepsy surgery fails to achieve seizure freedom in 30%–40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. Methods: Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. Results: Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. Significance: The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations

    Normative brain mapping of interictal intracranial EEG to localize epileptogenic tissue

    Get PDF
    The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localising epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 subjects (21,598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We hypothesised that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures post-operatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions which were spared by surgery were more abnormal than those resected only in patients with persistent post-operative seizures (t=-3.6, p = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (AUC = 0.75 p = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyon

    A library of quantitative markers of seizure severity

    Get PDF
    OBJECTIVE: Understanding fluctuations in seizure severity within individuals is important for determining treatment outcomes and responses to therapy, as well as assessing novel treatments for epilepsy. Current methods for grading seizure severity rely on qualitative interpretations from patients and clinicians. Quantitative measures of seizure severity would complement existing approaches, for electroencephalographic (EEG) monitoring, outcome monitoring, and seizure prediction. Therefore, we developed a library of quantitative EEG markers that assess the spread and intensity of abnormal electrical activity during and after seizures. METHODS: We analysed intracranial EEG (iEEG) recordings of 1009 seizures from 63 patients. For each seizure we computed 16 markers of seizure severity that capture the signal magnitude, spread, duration, and post-ictal suppression of seizures. RESULTS: Quantitative EEG markers of seizure severity distinguished focal vs. subclinical seizures across patients. In individual patients 53% had a moderate to large difference (ranksum r>0.3, p<0.05) between focal and subclinical seizures in three or more markers. Circadian and longer-term changes in severity were found for the majority of patients. SIGNIFICANCE: We demonstrate the feasibility of using quantitative iEEG markers to measure seizure severity. Our quantitative markers distinguish between seizure types and are therefore sensitive to established qualitative differences in seizure severity. Our results also suggest that seizure severity is modulated over different timescales. We envisage that our proposed seizure severity library will be expanded and updated in collaboration with the epilepsy research community to include more measures and modalities. © 2023 International League Against Epilepsy
    corecore